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Abstract. We report on an experimental study of an array of liquid columns, hanging below an overflowing
circular dish fed at a constant flow-rate. This one-dimensional pattern exhibits spatio-temporal chaos as well
as a host of ordered dynamical regimes, depending on flow-rate, initial positions, number of columns, and
liquid properties. In this paper, we present stability diagrams obtained with liquids of different properties
and an extensive quantitative study of the ordered, predictable dynamical states. Some destabilization
mechanisms of these regimes are also presented.

PACS. 05.45.-a Nonlinear dynamics and chaos – 47.20.Lz Secondary instabilities – 47.20.Ma Interfacial
instabilities (e.g., Rayleigh-Taylor)

1 Introduction

Pattern-forming instabilities are known to exhibit rich
and fascinating dynamical behavior [1,2]. They are ob-
served in every day life in various forms such as arrays
of clouds, ripples in underwater sand sheared by the tide,
or snow flakes. They have been studied intensively in the
last decades because some of their properties are associ-
ated to the generic concepts of symmetry-losses and tran-
sition toward disorder. They are also known to present
analogies with transition scenarios toward fluid turbu-
lence. For example, recently a set of oblique or traveling
waves have been evidenced in plane Couette flow [3,4] and
in Poiseuille flow [5]. The destabilization of a primary flow
via the emergence of a pattern of static or traveling waves
is seemingly a generic feature in many non-linear systems.

As a sub-class of these systems, one-dimensional desta-
bilizing fronts have focused interest because of their
relative simplicity. Directional viscous fingering (also
mentioned as the printer’s instability) [6–11], directional
solidification [12–15], arrays of ferrofluid pikes in an oscil-
lating magnetic field [16] or a thin layer of liquid in a ther-
mal gradient [17] are examples of such one-dimensional
fronts. The damped Kuramoto-Sivashinsky (KS) equa-

a Present address: Department of Mathematics, University
of Bristol, BS81TW Bristol, UK;
e-mail: p.brunet@bristol.ac.uk

tion [18–21] exhibits striking analogies with these systems
and is presumably the simplest numerical equivalent avail-
able.

The ‘circular fountain’ presented here and previously
studied in [22–26], provides another example of such a
destabilizing interfacial front. It consists in an overflow-
ing circular dish below which an array of liquid columns
forms (see Fig. 1a). Basically, this pattern can be seen as
the result of a combination between the Rayleigh-Taylor
instability [27–29] of a thin layer hanging below a solid
substrate, and a permanent supply of liquid with the flow-
rate Q. Incidentally, this liquid supply counterbalances the
Rayleigh-Plateau instability of each column [27], which
would cause the columns to pinch-off at low flow-rate and
would turn them into dripping sites. Pioneering studies on
arrays of columns formed below a horizontal cylinder or
at the lowest edge of an inclined plane were worked out by
Carlomagno [30] and by Pritchard [31]. The latter already
remarked that such a network exhibited unstable and com-
plex dynamics. Afterwards, Giorgiutti et al. [32–34] used
this system as a benchmark for capturing and studying the
dynamics of destabilizing interfacial fronts. The geometry
of the circular dish appeared then as the most suitable
one [22,23,33,34]: it avoids any edge effects that can lead
to unwanted perturbations or can bias the long time be-
havior of columns. In particular in our system, domains of
drifting columns can propagate endlessly, just like in an
infinite medium [22,24].
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(a)

(b)

Fig. 1. The circular fountain experiment. (a) Side view of the
array of liquid columns (dish diameter d = 10 cm, silicon oil
η = 100 cP). (b) The array viewed from above, suitable to
extract grey levels and build spatiotemporal diagrams.

In such pattern-forming systems, the direct resolution
of equations is far from obvious, and generally tells lit-
tle about the non-linear dynamics of interest. Most of-
ten, only the first stages of the primary instability can be
solved. This is the reason why these systems have been de-
scribed with phenomenological models, that involve local
or global symmetry breaking from a basic reference state,
generally, a static spatially-periodic pattern: see [35–41]
amongst many other studies, and [1] for an exhaustive re-
view. The determination of relevant parameters in these
models needs inputs from experiments, particularly in the
further stages, far beyond secondary instability thresh-
olds [40,41].

The circular fountain is first of all a curiosity of the hy-
drodynamics, as illustrated in the global drifting pattern
— a remarkable liquid merry-go-round. It also exhibits a
rich dynamics that recovers most of the phenomenology
of pattern-forming interfaces, which can be compared to
other systems [6–21] although it involves really different
physical mechanisms.

The scope of this paper is to present an exhaustive
study of different dynamical regimes when both the flow-
rate and the physical properties of the liquid (mainly its
viscosity here) are varied. In particular, we present sta-
bility diagrams assembling the limits of different possible
states in the parameters space. We show extensive mea-

surements of these dynamical regimes as well as their dif-
ferent break-up scenarios.

In our experiment, the natural control parameter is the
flow-rate per unit length Γ , which is equal to the volumet-
ric flow-rate divided by the perimeter of the circle along
which columns travel,

Γ =
Q

πd
(1)

with silicon oil (characteristics are given later), Γ is
roughly between 0.05 and 0.7 cm2/s for a columns pat-
tern. Static columns are about 1 cm apart, but the spac-
ing can get up to 2.2 cm between two drifting columns.
Figure 1b offers a view from above, with a zone of dilation
at the upper right side of the picture, related to a local
drift suggested by an arrow.

The selected state is not only determined by Γ , but
also by a set of initial conditions, like in most of out-of-
equilibrium systems. These initial conditions can easily be
tuned by the experimentalist [22,24,25], and it is one of
the advantages of this system: with one or several needles,
put in contact with the top of the columns, it is possible to
set their initial position and initial motion. Viscosity η is
also a crucial parameter. The number of the different avail-
able states and the complexity of the dynamics increase
with viscosity. In particular, if it is greater than 90 cP,
a regime of spatio-temporal disorder can be observed. No
such regime could be observed in the first studies carried
out at lower viscosities [22,23]. The chaotic states have
been studied in details in [26] and compared to disordered
behavior in other systems [6,15–17,42,43]. They usually
involve the generic scenario of spatiotemporal intermit-
tency (STI), i.e. a coexistence of laminar domains and tur-
bulent patches. Chaotic regimes in the pattern of columns,
and presumably in other destabilizing fronts, are somehow
different as they involve spatiotemporal singularities in the
phase space, called ‘defects’ (i.e. births and coalescence of
Cols. [26]). These defects result from complex interactions
between laminar domains, particularly propagative struc-
tures and oscillating patches [26]. In most situations, they
are clearly the signature of the break-up of states that
have been driven out of their domain of stability.

Let us finally mention a two-dimensional extension of
this system [44,45], where the network of columns is self-
organized around a hexagonal structure. Local departures
from this basic hexagonal state lead to dynamical states,
such as localized oscillations or a pair of columns, prop-
agative solitons or oscillating arrays of columns. A quan-
titative study of turbulent states in 2D has been carried
out in [46].

The paper is organized as follows: after a short review
of models of cellular structure dynamics (Sect. 2), we de-
scribe the experimental set-up (Sect. 3). Section 4 offers
a general overview of the dynamics of the pattern of liq-
uid columns. Measurements related to different states are
reported in Section 5. Section 6 is dedicated to different
break-up scenarios of several regimes. Section 7 concludes
the paper.
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2 A few notions on existing models
for 1D cellular patterns

2.1 Describing a cellular pattern
with a symmetry-based model: the example
of parity-breaking drifting cells

Even if the direct resolution of the complete set of equa-
tions has led to remarkable achievements in some pattern-
forming instabilities, these studies are mostly restricted to
the very first stages of the primary instability. Their ex-
tension to secondary instabilities would constitute a heavy
mathematical work, which furthermore would not bring
out the general characteristics one wishes to emphasize.
Instead, it is common to reduce the problem to a more
phenomenological approach, by seeking for simpler mod-
els, although rich enough to exhibit the complex behaviors
one expects. The framework of coupled equations linking
spatial phase and amplitude of a secondary bifurcated so-
lution, related to considerations of possible broken sym-
metries in the system, constitutes a general and mathe-
matically tractable approach.

For one-dimensional stationary patterns, Coullet and
Iooss have listed all possible secondary bifurcations to-
wards dynamical states from symmetry arguments [35].
In this approach, the pattern is represented by a one-
dimensional function U(x, t), of one space variable x and
of time t, that obeys simple general laws. The function
U(x, t) is generally the sum of a spatially periodic func-
tion U0(x+φ) chosen as a reference, and another function
u(x+φ, t) which is a combination of different modes. The
quantity φ is the spatial phase of the pattern.

U(x, t) = U0(x + φ) + u(x + φ, t) (2)

u(x + φ, t) =
∑

Aα(x + φα, t)mα(x + φα, t) (3)

α is the index of unstable modes mα that can be time-
dependent or not. Aα are the amplitude of these modes.
It has been shown that ten generic modes exist, corre-
sponding to ten different broken symmetries. Figure 2 il-
lustrates how such a function can represent a pattern of
cells, in specific states.

For example, the well-known propagating domains of
drifting cells [8,10,12,14,15,22–25,36] are associated to a
left-right symmetry breaking. Figure 2 (bottom sketch)
gives kinetic and geometrical definitions related to this
state: λ0 (resp. λ1) stands for the wavelength selected
outside (resp. inside) a propagative domain; Vd stands for
the drift velocity of cells (phase speed) and Vg for the
wall velocity of the domain (group velocity). The mode
mα(x+φα, t) is an anti-symmetrical function of x, that is
added to the reference U0 in the bulk of a domain [36].
The amplitude of the mode Aα and the phase φα are
supposed to vary slowly with space and time variables.
From symmetry arguments, one can deduce coupled par-
tial differential equations for Aα and φα. When one only
gets restricted to this specific antisymmetric mode — the
assumption is valid inside a propagating domain — the
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Fig. 2. Sketch of typical one-dimensional cellular pattern dy-
namics defined by a function U(x, t) (Eq. (3)). From top to
bottom, a periodic function represents static states; a time-
dependent period-doubled function represents out-of-phase os-
cillations; a superimposition of an antisymmetric mode and a
symmetric one (in regards to the left-right reflection) repre-
sents a propagative domain of broken-parity drifting cells.

following equations are found [36]:

At = (µ + εφx)A + DAxx + γAAx − δA3 + . . . (4)
φt = ζA + Dφφxx + . . . (5)

These equations have been restricted to their lowest orders
for the powers of A and φ and their mutual combinations.
This assumes that the system lies sufficiently close to the
bifurcation threshold, so that amplitudes keep small. Gen-
erally, µ appears as the natural control parameter of the
system. It some sense, the coupling εφx means that the
threshold of the bifurcation also depends on the phase
gradient. In this minimal model also, the coefficients δ
and ζ are a priori independent on the phase gradient φx.

The quantity φx is also the difference between the local
wavenumber and the reference wavenumber k0:

φx = k1 − k0 = 2π

(
1
λ1

− 1
λ0

)
. (6)

The time derivative of the phase φt is related to the drift
velocity of the cell, by the following relationship:

φt = Vdk1. (7)

Assuming that the phase gradient and the asymmetry
A are constant inside a propagative domain — which is
equivalent to say that all the drifting cells are identical
and at equal distance to their nearest neighbors, all the
space derivatives of A and φx can be removed from (4)
and (5). Thus, it is found that A and φt are proportional:
φt = ζA. The solution for A at equilibrium (At = 0) is:

A2 = (µ + εφx)/δ. (8)

Thus, the quantity to be measured is (Vdk1)2, that is pre-
dicted to vary linearly with the quantity (µ + εφx). In
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the printer’s instability experiments, the drift velocity was
found to vary as the square-root of the speed of the in-
ternal cylinder vi [8,10,11] and then the identification of
µ with vi was obvious. It was even possible to directly
measure A from the shape of the interface [11]. In direc-
tional solidification µ was identified to a combination of
the wavelength λ and of the pulling velocity that reads:
λV 2. In the pattern of columns, the identification of µ to
the flow-rate Γ was also straightforward from measure-
ments. From (6) and (8), one obtains:

(Vdk1)2 =
ζ2

δ
(Γ + ε(k1 − k0)). (9)

Combined with a control of the wavelength, this relation
has been used in reference [24] to determine the coeffi-
cients ε, ζ and δ for the array of liquid columns. Sur-
prisingly, this study revealed that ζ and δ are in fact φx

dependent, which means that additional non-linearities
of the kind A3φx and Aφx respectively in equations (4)
and (5) must also be considered. Another unexpected fea-
ture was also that this model, once generalized, was still
valid far from threshold of the secondary bifurcation [24],
even though it was built under the assumptions of close-
to-threshold conditions. More details will be presented in
Section 5.

Let us mention another model, based on nonlinear in-
teractions between the basic mode k0 and its first spatial
harmonic 2k0 (often called ‘k − 2k model’) described for
instance in [37]. This model predicts a broken parity of the
cells, leading to their drift, if there exists a phase mismatch
between the basic mode and its first harmonic. This model
is particularly attractive for interfacial fronts, where care-
ful observations of the interface reveal the following fact:
the shape of moving cells is the superimposition of primary
cells and of smaller secondary cells that tend to grow be-
tween the primary ones (see e.g. [10,11]). This is related
to a insufficiently damped spatial harmonic. Its relevance
has also been emphasized in the KS equation [21].

2.2 Possible extension of these models far
from threshold

One of the remaining issues in these systems is to what
extent the different patterns can be compared to each
other, when one examines their specific behavior far from
threshold. The model by Coullet and Iooss [35] offers a
framework for secondary instabilities close to their own
threshold. However, this model is not adapted to predict
certain far-from-threshold behavior. An extension of this
model has recently been built by Gil [40]. It introduces
a possible phase mismatch between the primary and the
secondary mode as a new variable, and allows discontinu-
ities in the amplitude and phase of the modes. This model
has provided promising results, comparable to those ob-
tained in numerical and experimental systems that are
driven far from secondary thresholds, such as (A) oscil-
lating wakes at the trailing edge of localized propagative
domains, (B) phase mismatch and amplitude holes in ex-
tended oscillating regimes and (C) turbulent oscillating

patches seemingly associated to STI. Situation (A) is ob-
served in the printer’s instability [7], in directional solidifi-
cation [14] and the pattern of columns [25], although with
specific relationships between the propagation speed and
the pulsation of oscillations that does not seem to be re-
produced by the model. Situation (B) has been observed
in directional solidification [15] as well as in the array of
columns [48] (see also later in this paper). Situation (C)
is more likely to be related to STI in the Rayleigh-Bénard
convection [42], where turbulent patches are characterized
by existence of cells that become blur and loose their ini-
tial shape. Spatio-temporal complexity appears differently
in our system, as columns still keep the same shape they
have in laminar states. The complexity only lies in the mo-
tions of the columns and not in the fluctuations of their
own shapes. The complex motions are sustained by mul-
tiple interactions between propagative and oscillating in-
clusions that give rise to defects, i.e. singularities in the
space phase variable. To our knowledge, such a behavior
has not been seen in Gil’s model, but has been repro-
duced in the Ginzburg-Landau equation (CGLE) [47] and
KS equations [21].

All these models, dedicated to pattern-forming insta-
bilities [21,47,49–51], include a large number of tunable
parameters, which are not easy to relate to physical quan-
tities. In order to capture the minimal set of required pa-
rameters, one needs some inputs from experiments. In the
following, we describe the specific behavior of the pattern
of columns and systematically try to compare to other
experiments and numerical models when possible.

3 Experimental set-up

Silicon oil of viscosity η, surface tension σ and density ρ
at 20 ◦C is injected at the center of the dish e through
a hollow vertical tube, see Figure 1a. The properties of
these liquids are listed on Table 1. The flow is measured
with a float flow-meter d (Brooks Full View GT 1024). It
is set by a gear pump a (Ismatec BVP Z) followed by a
cylindrical half-filled chamber c, that damps residual pul-
sations (radius = 20 cm, height = 15 cm). The imposed
flow-rate Q ranges from 2 to 30 cm3/s. The oil temper-
ature is regulated with a thermal bath b at 20 ◦C with
an accuracy of one degree. Plexiglas circular dishes with
different external diameter (d) have been used. The flow-
rate per unit length Γ is determined with an accuracy of
±0.005 cm2/s. Reported data are obtained with two dishes
of diameter d = 10 cm and 16.7 cm. The dish horizontal-
ity is crucial to obtain reproducible measurements. It is
accurately tuned with a three-feet table supporting the
setup, by simply checking the uniformity of amplitudes of
oscillating columns when the system undergoes a transi-
tion to an oscillatory state, as described in more details
elsewhere [24].

The pattern of columns is observed from above by a
CCD video camera, and lightened by a circular neon tube
put in the periphery of the dish and slightly below it.
Columns appear as series of U-shaped spots (see Fig. 1b).
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Fig. 3. Experimental setup. See text for details.

Table 1. Physical properties of the liquids.

Oil η ρ γ

(cP) (g/cm3) (dyn/cm)

PDMS 47V20 20 0.95 20.6

PDMS 47V50 50 0.96 20.7

PDMS 47V100 100 0.97 20.7

PDMS 47V200 200 0.97 20.7

Spatio-temporal diagrams are built by recording grey lev-
els along the circle which intercepts the columns’ center.
Experimentally, the diameter of this circle was found to
be independent on the flow-rate [23,24] and respectively
equal to D = 9.54 cm and D = 16.20 cm for the dishes
of diameter d = 10.00 cm and d = 16.70 cm. Images were
digitized using NIH Image 1.62 on a Macintosh computer.
To achieve reliable image processing, it is of first impor-
tance that the background color of pictures acquired from
above be as homogeneous as possible and that the edge of
columns be visibly sharp, in order to have easy-to-analyze
diagrams. Black paper covers the surround between the
dish and the neon tube to prevent unwanted light reflec-
tions.

Special care is also taken to protect the system from
any sources of perturbations. The dish is surrounded by
a transparent plexiglas cylinder of internal radius 9 cm,
against air motion. Vibrating apparatus (thermostatic
bath and pump) are placed on dampers.

4 Dynamical regimes: a qualitative overview

4.1 Flow structures in the circular fountain

The pattern of columns appears for the flow-rate Γ rang-
ing from 0.05 cm2/s to 0.7 cm2/s. At smaller flow-rate, an
array of static dripping sites is observed, whereas at higher
flow-rate an annular liquid sheet replaces the pattern of
columns. The study of annular sheets has been published
elsewhere [52].

The transitions between these different flow regimes
exhibit hysteresis: the flow-rate above which dripping sites
turn into columns is slightly larger than the flow-rate
below which columns turn into dripping sites. Similarly,
the annular sheet replaces the columns above Γ between

Fig. 4. Transition from dripping sites to columns regime, by
increasing the flow-rate (η = 100 cP). Γ ranges from 0.05 cm2/s
to 0.14 cm2/s. In the beginning, one notices that dripping sites
appear as dashed tracks. Then, columns appear as continuous
tracks. On these diagrams, and on the following ones, time is
labeled on axis in seconds.

0.6 cm2/s and 0.8 cm2/s (the value depends on viscos-
ity), whereas such a liquid bell can be maintained at very
low flow-rate once formed: if the flow-rate is carefully de-
creased and if the sheet is protected from surrounding
perturbations, one can maintain the bell at Γ of order
0.01 cm2/s [52]. Thus, rainbow patterns appear on the sur-
face, witnessing that the liquid thickness is locally equal
to a few light wavelengths.

As a consequence of these hysteresis, mixed states are
observed, including both dripping sites and columns or
columns and a local triangular-shaped sheet, in the same
way as it was already observed in an overflowing cylinder
experiment by Pritchard [31] and Giorgiutti et al. [32].
The network of dripping sites remains static and has a
homogeneous wavelength, which is very close to that of the
Rayleigh-Taylor (RT) instability of a thin layer hanging
below a solid ceiling [29]:

λdrops = λRT = 2π
√

2
√

σ

ρg
. (10)

With silicon oil, this wavelength equals 1.30 cm and is
independent of the viscosity. Thus, the network of dripping
sites is very similar to the case of a simple RT instability.

The natural spacing between columns at rest, is
slightly smaller than the RT wavelength. When the flow-
rate is increased in order to progressively transit from
dripping sites to columns, a transient state is noticed, dur-
ing which columns simply come up at locations of the for-
mer dripping sites. However, the pattern of columns can
not withstand a homogeneous static state at this wave-
length, and several new columns are then nucleated. This
necessary adjustment causes a decrease of the mean wave-
length λm. The spatiotemporal diagram of Figure 4 illus-
trates this behavior. Note also that the final state includes
three small propagating domains, inside which a part of
the remaining dilation remains trapped.

One of the fundamental differences between dripping
sites and columns is that the latter are coupled to each
other. In other terms, any column of the pattern feels the
motion of its nearest neighbors, contrary to dripping sites.
This is evidenced by the following fact: when one intro-
duces a needle in a dripping site and tries to drag it by
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capillary effects, the resulting motion of the dripping site
does not lead to any subsequent motion of the neighbor-
ing sites, which remain static. This has to be related to
the fact that no dynamical regime has ever been observed
in a pattern of dripping sites. On the opposite, the mo-
tion of any column is strongly related to its neighbors.
The coupling of the motion of nearest neighbors leads to
a collective dynamics in the pattern of columns.

In the following, the term ‘regime’ will refer to dynam-
ical states of the pattern of columns, in opposition to the
‘flow regimes’ previously used to qualify dripping sites,
columns or sheets.

4.2 General description of the dynamics

As already reported in previous articles [22,24–26], the
pattern of columns exhibits different dynamical regimes,
depending on both the flow-rate per unit length Γ , and
the initial conditions. Indeed Γ does not constitute the
only quantity governing the state of the system. The state
reached asymptotically is strongly influenced by the ini-
tial conditions, i.e. the number of columns, their position
and velocity. These conditions can somehow be controlled
by the experimentalist, using needles to force local mo-
tions and spacing, as explained in more detail in previous
papers [22–25]. Some of these quantities are dependent
on each other: for instance, the velocity of a column is
strongly related to the distance to its neighbors.

Practically, with experience and a bit of skill, it is pos-
sible to add or delete columns at will, at specific loca-
tions on the pattern. One starts from a primary regime of
static columns (abbreviated as ST in the following). The
detailed description of this manipulation is related else-
where [22,23], but can be summarized here in two main
cases:

– one can bring two neighboring columns to each other,
in a quasi-static way. In that case, a column can be lo-
cally suppressed without any initial speed. This tech-
nique is used to change the number of columns and to
keep the pattern static, or to turn a static state to an
oscillating one. In the same way, one can slowly move
two columns away from each other, and provoke the
nucleation of a new one between two others.

– one uses a needle to drag a column at a certain speed,
towards one or several neighboring columns. Then,
some of these columns are suppressed by coalescence
and several others acquire an initial speed that equals
the speed of the needle. This technique is rather used
to create propagative domains. Providing that the drag
speed is included in a certain range, the drag speed and
the drift velocity selected asymptotically by the system
are the same. This technique enables a selection of the
size of the domain and of the drift velocity, indepen-
dently from each other. For example, it is possible to
create a domain of drifting cells that extends to the
whole dish [22,24], if a large number of columns are
suppressed in that way. Depending on the speed one
uses to drag columns with the needle, a different wave-
length is obtained inside the final domain: the larger

(a)

(b)

(c)

Fig. 5. Overview of the main dynamical regimes (η = 100 cP).
(a) Localized propagative domain (LD) followed by transient
oscillations (Γ = 0.15 cm2/s). One defines the quantities Vd

(drift velocity), Vg (wall ‘group’ velocity) and the wavelengths
inside and outside the domain λ1 and λ0. (b) Global drifting
state (GD) (Γ = 0.19 cm2/s). (c) Extended oscillating regime
(OSC) (Γ = 0.21 cm2/s).

the speed is, the larger the obtained wavelength. Then,
this enables to control the wavelength in a certain al-
lowed range.

Spatio-temporal diagrams of the main obtained states are
shown in Figures 5a–5c which represent successively a lo-
calized domain (LD) propagating endlessly along the dish,
a globally extended drifting state (GD) and an extended
oscillating state (OSC). These regimes are ubiquitous in
similar systems, like the printer’s instability [8,10] or di-
rectional solidification [12–15]. In the LD case, it appears
that the wavelength outside the domain is selected to a
certain value λ0, by a robust process: indeed λ0 does not
depend on the flow-rate Γ , on the size of the domain, on
the velocities Vg and Vg or the wavelength inside the do-
main λ1. Only fluid parameters like viscosity or surface
tension seem to influence it [24,25,48]. Such a wavelength
selection has also been noticed in other systems, like the
printer’s instability or directional solidification [8,14].

Besides these well-known behavior, the oscillating-
drifting state (OSD), only briefly reported previously [26],
can roughly be viewed as made of successive identical
small propagative domains. It is then closely related to
localized drift. Furthermore, this state has the remarkable
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Fig. 6. Spatial tri-periodicity in the oscillating-drifting state
(OSD) (η = 200 cP, Γ = 0.25 cm2/s).

property of leading to a tripling of the spatial wavelength.
In other words, the motion of a given column is the same
on every third column as suggested in Figure 6. This state
is similar to the so-called ‘T-xλO’ (Tilt extended wave-
length Oscillations) states reported in directional solidifi-
cation of thin layers of eutectics [15]. In our case, x = 3.

Besides these latter regimes that should be qualified as
‘ordered’, ‘predictable’ or ‘laminar’, the system exhibits
chaotic regimes in a certain parameter domain. In these
regimes, chaos is both temporal and spatial (see Fig. 7),
hence called spatiotemporal chaos (STC). The columns
have chaotic motion and the number of columns N is not
constant. It means that two neighboring columns can meet
in their erratic motion and can merge spontaneously, and
that a column can also spontaneously split in two. By
analogy with streamlines in usual channel flows, this type
of regime is often qualified as ‘non-laminar’ or ‘turbulent’.
Of course, the word ‘turbulent’ does not refer to the mo-
tion of elementary fluid particles which remain laminar,
but rather to the spatial phase variable φ describing the
positions of columns. Each event such as the merging of
columns, or the splitting of a column, represents a singu-
larity for the spatial phase of the pattern. These events are
called ‘defects’ here and in our previous papers. In one of
these previous papers, we have shown that they contribute
to sustain chaotic motion, and that their spatiotempo-
ral density is a good measurement of disorder [26]. These
defects are produced by interactions between dynamical
states, for example oscillations and domains of drifting
columns. No chaotic motion can be observed if there are
no such defects in the structure. In other words, the num-
ber of columns is necessarily a fluctuating quantity in a
chaotic state.

The conditions for obtaining the different regimes are
detailed in the next paragraph, in the form of stability
diagrams.

4.3 Stability diagrams

We study regimes that are obtained when one varies the
three available parameters: the flow-rate Γ , the mean
wavelength λm and the viscosity η. Γ can be selected be-
tween 0.005 cm2/s, up to 1 cm2/s. The mean wavelength
λm is controlled through the number of columns N , as
λm = πD/N (D being the diameter of the circle along

Fig. 7. Regime of spatiotemporal chaos (STC) (η = 100 cP,
Γ = 0.25 cm2/s).

which columns travel), and thus it takes discrete values.
Its usual range of value is between 0.95 cm and 2.5 cm.
Silicon oils of different viscosity have been used, keeping
the surface tension constant, see Table 1. The resulting
diagrams are depicted in Figures 8–10 respectively for the
20 cP, 100 cP and 200 cP silicon oil. From these diagrams,
several comments can be drawn up:

– At 100 and 200 cP, the threshold for transition to
STC is almost the same for both viscosities: ΓSTC =
0.34 cm2/s. It is worth giving a significance for ΓSTC ,
as one can clearly observe that several ordered states still
exist at much higher flow-rates, for instance GD at large
λm or ST at small λm. These states correspond to spe-
cific situations that are never spontaneously obtained, but
are rather carefully ‘prepared’ by the experimentalist (see
Sect. 4.2, above). The threshold ΓSTC is meaningful for
the other usual conditions, practically most of the con-
ditions. Thus, when one starts from an initially chaotic
state, the latter will turn laminar after a finite time if
the flow-rate is decreased below ΓSTC . Also, from ran-
dom initial conditions (practically when the dish starts to
overflow), the system converges towards an ordered state
if Γ < ΓSTC (after a more or less short transient), whereas
it stays endlessly chaotic Γ > ΓSTC [26].

– At 20 cP, the diagram is quite simple: a large do-
main of static states (ST), and narrow domains for LD
and GD. At 50 cP, the diagram is qualitatively the same,
with larger domains for LD and GD and a smaller domain
for ST. Let us mention that for even lower viscosities, the
system mainly lies in a static state. Some preliminary ex-
periments carried out at 10 cP showed a very narrow range
for dynamical regimes, and practically it was very difficult
to keep them stable for reliable measurements.

– The most complex dynamics is obtained for larger
viscosities. STC regimes are observed for 100 and 200 cP.
Furthermore at these viscosities, the existence range of
ST states is narrow, whereas those of LD and GD are
much extended. At 200 cP, the new OSD state is observed
when a transient chaotic regime turns to a laminar one, Γ
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being slightly smaller than the threshold for chaos ΓSTC .
It turns out that this is the only stable state in a nar-
row range of flow-rate just below the threshold of chaos.
But once obtained (waiting long enough that the disor-
dered transient turns into this state), such a state can be
maintained in a large range of Γ .

– The STC regime only appears at high enough vis-
cosity: a minimal viscosity of η around 100 cP seems to
be necessary, as no permanent chaotic states could be ob-
tained at a viscosity of 90 cP. Under those conditions,
there exists a domain of parameters (Γ , λm) where the
pattern cannot reach a predictable, asymptotically sta-
ble state, but instead behaves chaotically, as shown in
Figure 7. Various breakup scenarios are observed as one
crosses the boundary of the STC domain, starting from
an ordered state. The main results obtained in the STC
regime have been reported in a previous article [26].

– In Figures 8–10, arrows represent the transition from
a state to an other. When a double arrow, it means that
the transition is reversible, which means λm keeps con-
stant. Most of the transitions are not reversible, as they
induce a change of N . Then, since this change is induced
by a variation of Γ , it is not possible to return to the pre-
vious state by proceeding the opposite variation of Γ . For
the very few reversible transitions, a return to the previ-
ous state is possible by simply varying the flow-rate back
to its initial value. For non reversible transitions, there
is not even a hysteresic behavior, as the return to the
initial state would require to rebuild the suitable initial
conditions (number and position of columns) in order to
reach it. For example in Figure 9, the arrow starts at the
boundary of a GD state, and ends in LD or STC domains.
It means that the latter GD state has been broken and has
turned to another state, generally with a shorter λm.

– The OSC domain has different shapes, depending
on the viscosity. At 20 cP, the existence domain is quite
large and localized at low flow-rates, and thus in some
sense the system stabilizes when increasing Γ . At 200 cP,
extended oscillations appear in a very narrow range of
flow-rate although they appear for a larger range of λm.
At 100 cP, the domain splits in two small parts. The upper
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part can be reached by starting at low Γ with a suitable
wavelength, and by increasing abruptly Γ in order to skip
the unstable area in between.

– Some domains of parameters allow the existence of
several distinct states, for instance LD+GD, LD+OSC,
LD+ST, ... It does not mean that two different states co-
exist at the same time, but rather that two different states
are possible in that range of parameters. The occurrence
of one state or another one depends on initial conditions,
i.e. position and speed of columns.

5 Quantitative study of dynamical regimes

5.1 Static states and wavelength selection

As stated in the previous section, ST states are obtained
with a large number of columns N , i.e. a small λm. As
shown in the stability diagrams, the range of λm where
they exist, is almost independent on Γ at low flow-rate
and shrinks at higher flow-rates.
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This is apparently the simplest state as it follows from
the primary instability, before any secondary bifurcation
takes place. At the very first stages of its setting in, slow
transient motions have been observed. These slow motions
do not last more than one minute. They tend to equalize
the wavelengths. However, they seem to play a role in the
further appearance of a global slow drift of the pattern.
Indeed, it has been noticed that a state of slow drift could
appear from a static state if Γ overcomes a certain thresh-
old, as it will be presented later in the paper. A possible
way to kill occurrences of the slow drift, is to let the pat-
tern turn perfectly homogeneous in space, by waiting for
the phase diffusion to be achieved. To proceed so, the flow-
rate has to be kept below the threshold value Γcs during
a while: typically one minute after the primary stage of
overflowing. Under this condition, the pattern will stay
frozen even for Γ higher than the usual threshold. How-
ever in this situation, a slow drift can be turned on any-
way, providing that a suitable perturbation is brought to
the pattern: for instance, by dragging columns very slowly
with a needle, and thus by initiating the expected mo-
tion. In that sense, the bifurcation towards slow drift can
somehow be considered as sub-critical. Measurements of
this state are presented later in the section. A close-up to
static and quasi-static (with slow drift) states is presented
in Figure 11.

The wavelength λ0 that is selected in the wake of a
propagative domain (Fig. 5a), is also almost independent
on Γ . However both the range of ST and λ0 depend on
viscosity η. This dependency is reproduced in Figure 12.

Some further comments can be extracted from Fig-
ures 11 and 12:

– λ0 is always lower than the theoretical RT wavelength
λRT , and decreases as η is increased. At small viscosity,
λ0 approaches λRT .

– The range of λm for stable ST states becomes narrower
at large viscosity, as those states become less and less
prevalent. However, the minimal wavelength λmin does
not vary, and nearly equals the minimal wavelength for
which the growth-rate of the RT instability is positive,
i.e. λmin = 2π

√
σ/ρg = λRT /

√
2 [29]. Thus any at-

tempt to add a column when the system lies at λmin

provokes the merging of two columns somewhere else
in the pattern: so the system keeps itself above λmin.

0,9

1

1,1

1,2

1,3

0 50 100 150 200 250

λλλλ  
(c

m
)

ηηηη (cP)

λλλλ
RT

λλλλ
min

Fig. 12. Range of wavelength where static states are stable,
versus viscosity. Black circles represent the reference wave-
length λ0. Open circles stand for the boundaries λmin and λmax

at low Γ .

At the other end of the stability domain (Fig. 11), the
ST states bifurcate towards dynamical ones (OSC or
LD) when it crosses the stability limit. λmax is gener-
ally smaller than λRT , except at lower viscosities when
it becomes equal to this limit value, see Figure 12.

– The value λmax is larger than λ0 at low flow-rate: this
is the plotted value in Figure 12. At higher flow-rate,
λmax is close to λ0. As a consequence, oscillations at
the trailing edge of LD states become unstable and
cause their break-up.

In view of the relative simplicity of the basic static pattern
(liquid columns connected by a liquid film), it is tempting
to seek for possible interpretations of its structure with
standard hydrodynamic theory of thin film flows, namely
the lubrication theory [53]. In a previous paper [52], we
have shown that the liquid thickness of the film flowing
down the vertical edge of the dish (see Fig. 3) was behav-
ing as: e ∼ ( η

ρgd )1/3Γ 1/3, then in agreement with the lu-
brication theory [53]. Does this also hold for other regions
of the flow, for instance for what concerns the liquid layer
hanging just below the dish? An attempt for answering
this question is detailed in Appendix A, that shows how
far simple dimensional arguments can lead in such a sys-
tem. Particularly, a prediction of h, the thickness of the
liquid layer of an arch between two columns is proposed,
and confronted to measurements.

5.2 Oscillatory state with spatial period-doubling

Out-of-phase oscillations appear when the local wave-
length is slightly larger than λ0. This situation can occur
(a) globally on a homogeneous state with a suitable num-
ber of columns (Fig. 5c); or (b) locally at the trailing edge
of a propagating domain of drifting columns (Fig. 5a). As
suggested in stability diagrams (Figs. 8–10), situation (a)
occurs in a narrow range of parameters. Figure 13a shows
measurements of angular frequency ω versus Γ , for var-
ious viscosities from 10 cP to 200 cP, obtained for both
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a square-root function of flow-rate: ω = CΓ 1/2. (b) Value of C
versus viscosity.

situations (a) and (b). No difference in ω could be no-
ticed between measurements obtained in both situations
(see [25]).

At any given viscosity, data are well fitted by a square-
root law: ω = CΓ 1/2. Figure 13b shows the evolution of
C with viscosity.

The simple empirical relationship ω ∼ Γ 1/2 suggest
that this law should be obtained from a coarse argument,
based on the seek for characteristic length and time. This
is detailed in Appendix B.

5.3 On phase inhomogeneities inside extended
oscillating regimes

A closed-up view on extended oscillating regimes shows
that two consecutive columns never oscillate perfectly out-
of-phase. It is straightforward that a homogeneous phase
profile will not match the periodic boundary conditions if

(a)

(b)

Fig. 14. Phase and amplitude inhomogeneities in an extended
oscillating regime with a odd-number of columns (η = 100 cP,
Γ = 0.26 cm2/s, d = 10 cm, 27 cols.). (a) Progressive phase
drift along the pattern. (b) Steep phase jump coinciding with
an amplitude hole.

Fig. 15. Almost homogeneous amplitude in an extended oscil-
lating regime, without any phase jump. 26 col. Γ = 0.18 cm2/s,
η = 100 cP. Duration 2 s.

the number of columns is odd. This is illustrated in Fig-
ures 14 with d = 10 cm, η = 100 cP and N = 27. The
black line stands for an isophase in regards to the period-
doubling mode. Figures 14a and 14b show two different
situations where phase mismatch is observed. Figure 14b
shows a sharp phase jump that coincides with an ampli-
tude hole. This behavior has also been observed in exper-
iments of directional solidification [15] and in simulations
of coupled amplitude/phase model [40,41].

Under the same experimental conditions (d = 10 cm,
η = 100 cP), it is possible to obtain an extended oscillating
regime with an even number of columns (N = 26). Only
smooth variations along the isophase can be noticed, see
Figure 15.

However, an amplitude hole can exist with an even
number of columns. In this case, its occurrence can be
coupled to a global slow drift, as illustrated in Figure 16,
and it seems that the amplitude hole corrects the phase
mismatch resulting from the slow drift.
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Fig. 16. Drifting amplitude hole in an oscillating state. 26
col., Γ = 0.139 cm2/s, η = 100 cP. Duration 64 s. The close-up
shows local variations of the amplitude.

5.4 Global drifting states: a quantitative study
of parity-breaking

The main feature of this system is the possibility to
perform exhaustive and accurate studies of the parity-
breaking bifurcation. In this section, we investigate the
phase velocity of the parity-broken states, when these
states cover the whole pattern (GD states). We also in-
terpret the observed results in terms of coupled ampli-
tude and phase equations, in the spirit of Goldstein et al.
description [36]. A brief account of this work, has been
published in [24].

As suggested in stability diagrams, GD states can be
obtained with a large number of different wavelengths.
The wavelength being simply equal to λ = 2πd/N , it
is possible to tune it by changing N , in order to study
separately the influence of flow-rate, viscosity and wave-
length on Vd. Measurements are shown in Figures 17a and
17b, where Vd is plotted versus Γ for different viscosities
(η = 20, 50, 100 and 200 cP). They have been obtained
with dishes of diameter d = 10 and 16.7 cm. For the sake
of clarity, each graph shows measurements for only two
values of viscosities.

Each branch corresponds to a fixed number of columns,
hence a fixed wavelength. The drift velocity Vd is uniquely
defined by giving flow-rate, viscosity and wavelength. It
is a growing function of wavelength and of viscosity. It
increases sharply at low flow-rate, tends to saturate at
medium flow-rate and slightly decreases at high flow-rate.

Detailed measurements for one value of viscosity (η =
100 cP) are shown in Figures 18a, 18b. Figure 18a shows
values of speed Vd. Figure 18b represents the square of
the quantity (Vdk), which is also the square of the time
derivative of the spatial phase (φt), see Section 2. This
quantity exhibits a linear dependency with flow-rate, in
a significant range above threshold. The threshold Γc is
defined as the value of flow-rate extrapolated to Vd = 0.
Such a dependency is predicted by the model of Goldstein
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Fig. 17. Phase velocity Vd of a global drifting state, for various
wavelengths λ. (a) η = 20 and 50 cP. (b) η = 100 and 200 cP.

et al. [36] for a supercritical bifurcation towards a parity-
broken state. However these measurements show that both
the slope and threshold depend on λ, which was not in-
cluded in their initial model. From this set of measure-
ments, it has been possible to determine coefficients of
the model of equations (4) and (5), and furthermore to
propose the addition of new terms.

Defining a and Γc respectively as the slope on Fig-
ure 18-b and the flow-rate threshold, one can write an
empirical law as follows:

φ2
t = (Vdk)2 = a(φx)(Γ − Γc(φx)). (11)

The quantity φx, defined in equation (6), represents the
spatial derivative of the phase. It is negative inside a do-
main of drifting, dilated cells. For all viscosities studied,
a and Γc exhibit linear variations with φx as seen in Fig-
ures 19a, 19b for η = 100 cP.

The following relationships result:

Γc(φx) = Γc0 − κφx (12)
a(φx) = αφx + β. (13)



308 The European Physical Journal B

0

0,5

1

1,5

2

2,5

3

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35

λλλλ=2.21 cm
λλλλ=2.03 cm
λλλλ=1.89 cm
λλλλ=1.76 cm
λλλλ=1.64 cm

V
d
 (

cm
/s

)

ΓΓΓΓ (cm2/s)

λ 

(a)

0

10

20

30

40

50

60

0 0,05 0,1 0,15 0,2

λλλλ=2.21 cm
λλλλ=2.04 cm
λλλλ=1.89 cm
λλλλ=1.76 cm
λλλλ=1.64 cm

(V
d
 k

)2  (
s-2

)

ΓΓΓΓ (cm2/s)

λ 

(b)

Fig. 18. (a) Vd measurements for η = 100 cP, and for different
wavelengths. (b) Square of the time derivative of the spatial
phase φ2

t = (Vdk)2.

Measurements with four values of viscosities allow to
roughly capture the evolution of α and β with η, see Fig-
ure 20a: β decreases significantly as the viscosity increases,
whereas α shows a slight increase around a value of –100.

The quantities κ (which has the dimension of a flow-
rate) and Γc0, appearing in the empirical expressions of
the threshold, are both decreasing with viscosity as power
laws (of respective exponents –0.41 and –0.94), see Fig-
ure 20b. This means that: (1) a high viscosity tends to
promote the instability at a fixed flow-rate. (2) the thresh-
old is less and less wavelength-dependent at high viscosity.

In a previous paper [24], we showed that it was possible
to turn these empirical results into a rigorous adjustment
of Goldstein et al. model (Eqs. (4) and (5)). We proposed
to add new terms that are consistent with the symmetries
of the system, which allows to recover our results. The
following extended model is the simplest that reproduces
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Fig. 19. Constitutive parameters of the predictive law for the
phase dynamics, obtained from coupled amplitude/phase equa-
tions (η = 100 cP). (a) Coefficient a, versus k0−k1 = −φx and
(b) Threshold Γc.

experimental data [24]:

At = (µ + εφx)A + γAxA + DAxx − ν(β + αφx)A3 + ...
(14)

φt = ν(β + αφx)A + Dφφxx + ... (15)

by identifying µ to (Γ − Γc0)/ν and ε to κ/ν. Let us note
that ν has the dimension of the square of a length: its
numerical value can be chosen equal to one without any
loss of generality.

These equations include new terms that couple the am-
plitude and the phase gradient: the coefficients ζ and δ of
(9) are linear functions of φx. All the terms in these equa-
tions match with the symmetries of the primary pattern
(namely x → −x, φ → −φ, A → −A): any of these terms
will turn to its opposite by the latter transformation.

5.5 Propagative domains of drifting cells: range
of existence and kinematic properties

In a GD state, the wavelength can be selected at will
by the experimentalist via the number of columns N ,
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Fig. 20. Coefficients of the model (14)(15).

as: λ = 2πR/N . In a LD state, λ is selected by the sys-
tem itself, as well as the wavelength selected outside the
domain λ0.

In order to clarify the wavelength selection process in-
side and outside a LD, it is worth approaching their range
of existence presented above in Figures 8–10, but replac-
ing λm by the phase gradient φx. Figure 21 represents
the phase gradient inside a domain for various LD states,
versus flow-rate. The dotted line represents the stability
limit of GD states. Except for high flow-rate, the wave-
length of standing columns outside domains is equal to
the reference one: λ0 = 1.08 cm with the silicon oil of
η = 100 cP. For most of the LD states, the phase gradient
is surrounded by the boundaries of GD states. There exists
anyway a few measurements at small λ1 showing abnor-
mally small phase gradients and lying out of the GD exis-
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Fig. 21. Range of existence of domains of drifting cells, in gra-
dient of the space phase φx versus flow-rate (η = 100 cP). Open
symbols stand for LD states, filled symbols and the dotted line
bound the stability domain of GD states.

tence domain. Otherwise, the range of existence for (φx,Γ )
is larger for GD than for LD. Global states are constrained
to a fixed wavelength, whereas LD states can adjust their
wavelength dynamically. This adjustment, provoked for
instance by a modification of Γ , apparently occurs before
the bounds of the GD existence domain are reached, as
shown in Figure 21.

This suggests that the wavelength selection inside a
domain is somehow more subtle than what was reported
in previous studies [23]. Indeed, the wavelength λ1 is pri-
marily chosen in a large range of values, depending on
how the domain is generated. Then, the chosen value will
be kept until a significant change on the values of control
parameters is applied, so that the system can not hold
the initial wavelength anymore and adjusts itself to an-
other value. Such a change can be an increase of Γ or the
creation of another domain.

Let us now present the kinematic properties of LD
states. Figures 22a–22c present measurements of wave-
lengths λ0 and λ1, group (Vg) and phase (Vd) velocities
for various acquisition series, on domains of various sizes,
with a viscosity of η = 100 cP. Other measurements have
been performed as well for different viscosities, and have
revealed similar tendencies.

Like for GD states, Vd increases with flow-rate. So does
the group velocity Vg. Data have been obtained from lo-
calized domains of different sizes and different internal
wavelengths λ1. The size has no influence on velocity, but
λ1 influences Vd and Vg. As previously presented in Fig-
ure 21, λ1 can take various values for the same flow-rate.
The same kind of dispersion is observed for Vd and Vg val-
ues. However, it is confirmed that λ0 is almost constant
within the studied range of flow-rate, and thus constitutes
a suitable reference wavelength.

Let us write the kinematic relationship of the forward
or backward fronts of a localized domain [14]:

λ1

λ0
= 1 +

Vd

Vg
. (16)
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Fig. 22. Measurements on propagative domains (η = 100 cP).
(a) Wavelengths versus flow-rate. (b) Group velocity versus
flow-rate. (c) Phase velocity versus flow-rate.

Or written differently:

Vdk1 = −Vgφx. (17)

This suggests that if one wants to unify all the measure-
ments, one needs to check the dependency between Vd and
λ1. Let us recall that λ1 can not be controlled inside a lo-
calized domain, contrary to the case of GD states, and that
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Fig. 23. Rescalling of measurements of Vd on a single master
curve.

it stays bounded in a flow-rate-dependent range, as shown
in Figure 21. One can explain the dispersion on Vd and Vg

by the dispersion on λ1. Using the same scaling-laws as
for GD states, it is possible to make data for Vd and Vg

collapsing on a single master curve. Figure 23 shows data
for Vd for both LD and GD states, corresponding to Fig-
ures 18 and 22c, and rescaled with the quantities defined
by equations (12) and (13). The scaling law holds very
well, even far from threshold. The same scaling is possible
for Vg, using equation (17): the collapse of Vg measure-
ments on a single curve is obtained by plotting the quan-
tity Vgφx(αφx + β)−1/2 versus Γ − Γc(φx), see Figure 24.

From these scalings, it is possible to draw some short
conclusions. First, it appears that localized domains and
global states have the same kinematic properties, the only
difference being that the system chooses itself the wave-
length inside a localized domain. Secondly, if the pattern
includes several domains, they will necessary have the
same λ1 and Vd, as they have to propagate at the same
speed Vg, so that no domain can go ahead of another one.

5.6 Oscillating-drifting state: quantitative study

As briefly mentioned in Section 4, the OSD state can be
obtained under quite specific conditions. First, a high vis-
cosity is needed: it was mainly observed for η = 200 cP,
see Figure 10. It could be created and kept stable for
η = 100 cP as well, although in a very narrow range of
parameters: this range of appearance was too narrow and
not reproducible enough to trace a specific domain for it
anyway. It is called ‘oscillating-drifting’, as can be viewed
as successive small, equally sized domains which propa-
gate at the same speed. As each small domain lets a short
oscillatory wake (of half a period of oscillations) at its
trailing edge, the global motion of a column is a mix be-
tween oscillations and drifts.
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Such a state appears after long chaotic transients: for
η = 200 cP, there exists a range of flow-rate where the
transiently chaotic system can not but reach the OSD
state. In a first stage, one lets the system ‘quenched’ in a
permanent STC regime, then one decreases Γ until it is
slightly smaller than the critical flow-rate ΓSTC (see sta-
bility diagram in Fig. 10, and Ref. [26]). Figure 25 illus-
trates how a transient chaotic state can turn into a OSD
state. Once formed, it is possible to keep this state stable
into a broad range of Γ , and to perform measurements
of its properties. In that sense, the domain of existence
is much more extended than the domain of creation. The
appearance of such an organized state, without any pre-
cursor sign, remains to be explained.

Figure 26a presents the definitions of three character-
istic velocities: the group velocity Vg is the same as for
a classical propagative domain; but one can define two
drifting speed: the maximal drifting speed Vdmax, corre-
sponding to the usual speed of a column inside a domain,
and the mean drifting speed Vdmean. The small domains
constituting this state, can co-exist with another domain
of larger size (Fig. 26b), and propagate at the same speed.

In the same way as an oscillatory state could exhibit a
quasi homogeneous period-doubling only for an even num-
ber of columns, the oscillating-drifting state is homoge-
neous only is the number of columns is divisible by 3.
With the dish of diameter d = 10 cm for instance, it ap-
pears for N = 23, 24 and 25; the state is homogeneous
and shows perfect tri-periodicity only for N = 24.

Measurements for the three velocities defined in Fig-
ure 26a are plotted on Figures 27a–27c, for three values
of mean wavelength. The velocities increase with flow-rate
and with the mean wavelength, which is similar to what
is observed on isolated propagating domains. The group
velocity is well fitted by a power-law of exponent one half.
Figure 27d is the ratio between Vdmax and Vdmean. This
ratio is about 3.

Fig. 25. Convergence of an initially chaotic state towards
a particular state (OSD) mixing oscillations and drift. Γ =
0.26 cm2/s, η = 200 cP. The total duration is around 70 s.

(a)

(b)

Fig. 26. (a) Oscillation-drifting state, extended on the whole
pattern (η = 200 cP, Γ = 0.242 cm2/s, d = 10 cm, N = 24) and
definition of the three characteristic velocities of this state. (b)
Co-existence with a local domain of drifting cells. η = 200 cP,
Γ = 0.34 cm2/s, d = 10 cm, N = 21.

5.7 Slow drift of quasi-static regimes

As previously stated, this regime consists in a slow drift of
the whole pattern. It can be perceived during long observa-
tions of quasi-static states. The typical order of magnitude
of the drifting speed Vd is 0.01 cm/s. This regime generally
appears when the flow-rate exceeds a certain threshold.
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Fig. 27. Velocity measurements of an oscillating-drifting state,
for different number of columns (η = 200 cP, d = 10 cm).
(a) Mean phase speed. (b) Maximal phase speed. (c) Group
velocity. (d) Ratio Vdmax/Vdmoy.

(a)

(b)

Fig. 28. Diagrams of slow-drift states (η = 200 cP, d =
10 cm). (a) Γ = 0.089 cm2/s, 28 cols. (λ = 1.067 cm). Du-
ration 640 s. (b) Slow drift with several changes of direction
(Γ = 0.266 cm2/s, 32 cols. λ = 0.933 cm. Duration 1280 s).

The direction of the slow drift is chosen by the system:
presumably, this direction is fixed by imperfections of ini-
tial conditions, i.e. by initial tiny departures from spatial
homogeneity. Furthermore, in most conditions, the sys-
tem keeps the initially chosen direction. An example is
depicted in Figure 28a. It is remarkable that slow undu-
lations are superimposed to the drift. We have observed
that at lower flow-rates, these undulations can exist with-
out any drift.

The range of Γ for the existence of these states is also
bounded by a upper threshold. Above the threshold, they
cease to exist and transit to other dynamical states, see
stability diagrams Figures 8 to 10. Close to this upper
limit, the drift can spontaneously changes its direction,
as shown in Figure 28b. These unstable phenomena occur
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Fig. 29. Measurements of the slow-drift velocity versus flow-
rate, for different λ (d = 10 cm). (a) η = 100 cP. (b) η = 200 cP.

in a narrow range of parameters, and perhaps constitute
the first step to the destabilization towards OSC or STC
regimes at increasing flow-rate.

The quantitative study of such a regime needs long
acquisitions (up to 20 min), and then requires a much
longer time step between each line of spatiotemporal di-
agrams than for usual dynamical regimes. Measurements
of the drift velocity Vdslow are reported in Figures 29a et
29b for two viscosities 100 and 200 cP.

The velocity is an increasing function of λ, and η, as
does the drift velocity of LD and GD states. Otherwise,
the minimal flow-rate threshold to trigger the slow-drift,
namely Γcs, decreases at higher λm and higher η.

If one analyses the data more carefully, it turns out
that the velocity follows a square-root law with the flow-
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Fig. 30. (a) (Vdk)2 versus flow-rate, for two viscosities 100 cP
(black symbols) and 200 cP (open symbols). (b) The dimen-
sionless quantity (Vdk)/ωu versus flow-rate.

rate, just as the LD and GD states. Figure 30a plots the
quantity (Vdk)2 versus Γ , for values close to threshold.
These results suggest that the bifurcation to a slow drift
is supercritical. In order to build a dispersion relation be-
tween slow drift and undulations, the quantity Vdk is then
compared to the measured pulsation of undulations ωu. It
turns out that the ratio Vdk/ωu is close to one when the
flow-rate is high enough.

To summarize, the slow drift velocity obeys the simple
empirical relationship:

(Vdk)2 = αs(Γ − Γcs) (18)

with αs and Γcs which are functions of λ and η.
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It is remarkable that the slow drift and the ‘usual’
drift due to parity-breaking of cells, show up striking
similarities in their relation Vd(Γ ), see equations (11) and
(18), although the velocities differ by two orders of mag-
nitude, and keeping in mind that these two states origi-
nate from distinct mechanisms. Consequently, it would be
interesting to approach this state with amplitude/phase
equations, similarly to Goldstein et al. model [36]. The
difficulty is here to identify an equivalent of the cell asym-
metry: with the visualization accuracy we were able to
achieve, no apparent asymmetry could be noticed during
the slow drift.

Such slow dynamical phenomena have also been ob-
served in the printer’s instability [9] in the form of slow
in-phase oscillations of cells, then rather like the situa-
tion of Figure 28b. Otherwise in the printer’s instability,
slow motions stop after some hours [9], which was not
noticed on the pattern of columns: they could here be
recorded during more than one day, before the acquisition
was stopped.

There are still some points that remain to be clarified.
Amongst them, it is unclear why this state appears above
a certain threshold. What determines this threshold value?
Why does spontaneous changes of direction occur?

6 The breakup of dynamical states

In this section, we relate a catalogue of different break-up
scenarios of ordered regimes. Such situations are generally
triggered after the flow-rate be progressively increased or
decreased, in order to cross the boundaries of stability
domains described in Figures 8–10.

Starting from initial conditions at given flow-rate and
number/positions of columns, one lets the system evolve
and converge to an asymptotic state. In a second step, the
flow-rate is varied and we observe how the pattern evolves.
The break-up of the initial state is often associated to
occurrences of one or several defects, i.e. changes in the
number of columns. However, this is not always the case:
a change of state can sometimes be observed without any
defect occurrences. Anyway, the resulting final state can
either be a laminar regime distinct from the initial one, or
a chaotic one.

6.1 Break-up of static and quasi-static states

A static regime can break through various scenarios. The
transition to dripping occurs when the flow-rate per col-
umn is lowered under a threshold value: q ≤ qc, with
q = Q/N . For some values of λm, an increase of flow-rate
can lead to a slow-drift superimposed to slow undulations,
as shown in Figures 28. In most cases, the slow-drift is the
first stage towards more dramatic transitions: if the flow-
rate is increased further, the pattern will show oscillations,
propagative domains or chaos. However, it is difficult to
figure out how the slow dynamics interacts with the other

(a)

(b)

Fig. 31. (a) Two merging columns after an increase of flow-
rate: η = 100 cP, d = 10 cm, Γ = 0.45 cm2/s, N = 32 and
finally 31 columns. (b) Column nucleation after transient os-
cillations: η = 100 cP, d = 16.7 cm, Γ = 0.16 cm2/s, N = 45
and finally 46 columns.

swift regimes and eventually influence the break-up sce-
narios. As previously shown, it could be for instance re-
lated to the localization of oscillations (Fig. 16).

To summarize, by increasing flow-rate Γ above a cer-
tain threshold, from an initial static or quasi-static state,
two following break-up scenarios are observed:

– For λ � λmin or slightly larger (shrunk structure), an
increase of flow-rate can lead to the merging of two
columns into a single one. This leads to an increase
of λm, see Figure 31a. This secondary instability is
seemingly an Eckhaus instability, followed by an ad-
justment due to phase-diffusion. The subsequent mo-
tions of columns are more significant in the vicinity of
the defect. The Eckhaus instability itself is provoked
by phase inhomogeneities in the initial pattern. This
instability is ubiquitous in other similar systems, like
the printer’s instability [8], the directional solidifica-
tion [13,15] and the KS equation [21].

– For λ > λ0, a change of Γ can trigger an oscillatory
state (the change is generally an increase of Γ , but it
can be a decrease in the case η = 20 cP). In a further
stage, a defect (birth of a column) appears and then
the system reaches a new stable state (Fig. 31b). In
some situations, it was even observed that the system
could directly turn to a LD or a STC state, after a
short oscillatory transient.

6.2 Break-up of drifting states

Within the denomination ‘drifting states’, are included
both LD and GD. We first report break-up of GD states
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when the lower limit of Γ if crossed. In that situation, two
main scenarios are observed:
– the break-up can be caused by the rupture of one or

several columns that turn into dripping sites. Gener-
ally, the dripping site does not follow the drift motion
of columns, which provokes a cascade of subsequent
break-ups to consecutive sites (Fig. 32a). This transi-
tion to dripping originates from the Rayleigh instabil-
ity, that causes the pinch-off of a column at its top for
low enough flow-rate. As for static states, the break-up
occurs below a threshold flow-rate per column qc. The
value of qc is 0.07 cm3/s for the 100 cP oil;

– the break-up can be caused by a phase-instability, wit-
nessed by oscillations of the positions of columns prior
to break-up (Fig. 32b). This scenario arises for q higher
than qc and concerns the most dilated GD states (ob-
tained with λm larger than 1.9 cm for the 100 cP
oil). At the ending stage, the Rayleigh instability also
occurs. This phase instability shows that the parity-
breaking mode involved in GD and LD is unstable near
the threshold value of µ+ εφx (recalling that µ is iden-
tifiable to (Γ − Γc), see equations (4) and (14), as it
was predicted by usual models [37,39].

Figure 32 also illustrates a fact that was briefly invoked
at the end of Section 4.1, i.e. that dripping sites cannot
move along x: as soon as a column turns into a dripping
site, its motion — previously a drifting one — vanishes.

When the upper flow-rate limit is reached, it is ob-
served that the rupture of a drifting state can result either
to another drifting state with a larger number of columns,
either to a static state, either to a chaotic state. The latter
situation is only encountered for a high enough viscosity
(100 or 200 cP). Figures 33a to c give several examples of
break-ups of GD states, and Figures 34a to c show some
examples of broken LD states.

Amongst this host of break-up scenarios, some phe-
nomena deserve further comments:

– Oscillations of drifting columns, appearing near both
lower (Fig. 32b) and upper (Fig. 33b) thresholds, are of
the same nature. This oscillatory behavior, which is the
first stage of the rupture of GD states, does not have to
be confused with the oscillating-drifting state (OSD)
shown in Figure 6, which rather consists in successive
small propagative domains. After careful observations,
it is noticeable that between each pair of columns, an
intermediate drop (the one that initially breaks the
parity symmetry of the arch) shows periodic cycles of
growth and retraction. A part of the liquid in this drop
is periodically absorbed by one of the columns, so that
its growth is hindered like in the period-doubling oscil-
latory states. Then it grows again. This cycle of growth
and absorption has a well-defined characteristic time,
of the order of one second. From a point of view of
a phase instability, the growth of such transient drop
may signify that, in this range of parameters, the sys-
tem tries to catch a smaller wavelength than the one
imposed initially.

– A global drifting state generally gets unstable beyond a
critical flow-rate, that is higher than the upper limit for

(a)

(b)

Fig. 32. Break-up of drifting states, when decreasing flow-
rate, η = 100 cP. (a) Pinch-off of a column into drops, and
cascade of generations of dripping sites: d = 16.7 cm, N = 29,
Γ = 0.042 cm2/s. (b) Oscillatory instability as a first stage
to break-up, with final dripping sites: d = 10 cm, N = 14,
Γ = 0.055 cm2/s.

local drifting states, see also Figure 21. To explain this
fact, we propose the following: the break-up of local
domains is generally initiated in the oscillating wake,
the period-doubling oscillations being much less stable
at high flow-rate. Then the first defect occurrence that
triggers break-up, is observed in the bulk of the wake.
This is an important mechanism for the creation of
disorder [25,26]. Then, because they do not contain
such an oscillating wake, GD states can be withstood
at flow-rate higher than LD states.

6.3 Break-up of oscillatory states

Extended oscillatory regimes appear in a reduced range
of parameters for all the viscosities we used. Their stabil-
ity is then particularly sensitive to any variation of flow-
rate. When Γ is decreased, starting from an oscillatory
regime, one observes that oscillations progressively fade
out and that the pattern turns static. This transition oc-
curs without any defect. A similar scenario is also observed
when one increases Γ at low-viscosity (20 cP). However,
at higher viscosities (50 to 200 cP), the increase of Γ leads
to a different behavior: it generally breaks the state with
the generation of defects. At 50 cP, the final state is ei-
ther S or LD; but at 100 or 200 cP, the final state is LD
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(a)

(b)

(c)

Fig. 33. Examples of break-up of global drifting states ap-
proaching the upper flow-rate limit (η = 100 cP). (a) Final
state: several domains following each other (d = 16.7 cm,
N = 25, Γ = 0.28 cm2/s). (b) Oscillations as first step of
destabilization: d = 10 cm, N = 17, Γ = 0.36 cm2/s. (c)
Transition towards spatiotemporal chaos: d = 10 cm, N = 17,
Γ = 0.55 cm2/s.

(Fig. 35a) or STC (Fig. 35b). Seldom, a LD is created
without any defect (Fig. 35c).

Thus, the three presented situations emphasize the
non-trivial interactions between oscillations and propaga-
tive domains: it was previously shown in Figures 5a and
34d that out-of-phase oscillations follow propagative do-
mains. Figures 35a to 35c show in some sense the inverse

(a)

(b)

(c)

(d)

Fig. 34. Examples of break-up of propagative domains ap-
proaching the upper flow-rate limit, η = 100 cP except (c).
(a) The final state consists in multiple domains: d = 10 cm,
N = 16, Γ = 0.176 cm2/s. (b) Transition towards spatiotempo-
ral chaos: d = 10 cm, N = 21, Γ = 0.5 cm2/s. (c) Transition to
a static state: η = 20 cP, d = 16.7 cm, N = 37, Γ = 0.32 cm2/s.
(d) Break-up induced by amplification of oscillations follow-
ing the trailing-edge of the domain: d = 16.7 cm, N = 41,
Γ = 0.33 cm2/s.
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(a)

(b)

(c)

Fig. 35. Break-up of an oscillatory state induced by an in-
crease of flow-rate (η = 100 cP). (a) A pair of domains prop-
agating to opposite directions are generated by the break-up
(d = 16.7 cm, N = 46, Γ = 0.27 cm2/s). (b) Transition to-
wards spatiotemporal chaos (d = 10 cm, N = 27, Γ = 0.29
cm2/s). (c) A domain is created although no defect is shown
(d = 16.7 cm, N = 45, Γ = 0.225 cm2/s).

process: oscillations can lead to small propagative domains
when they get amplified enough.

6.4 Collision between two propagative domains

In this paragraph, we relate seemingly marginal situations,
although they are spectacular and tell about how propaga-

(a)

(b)

(c)

Fig. 36. Collisions between two domains propagating to op-
posite directions (η = 100 cP, Γ = 0.276 cm2/s). (a) Same size
for the two domains: cancelation of drift and transient oscilla-
tions. (b) and (c) Different sizes: only the largest one survives,
with a final smaller size.

tive structures get involved in the production of disorder.
These situations consist of two propagating domains, that
travel in opposite directions and collide with each other
after a short while. For these experiments, the largest dish
(d = 16.7 cm) has been used, in order to enable the devel-
opment of two independent domains. To set up such a sit-
uation, one launches the two domains close to each other,
using the method described in the experimental set-up.

Figures 36 show three examples of collisions: (a) two
domains with same size cancel each other when they col-
lide. If one of the domains is larger than the other one,
it will continue its course, but its size is decreased by the
size of the smaller one (b and c).
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It is worth noticing that such a behavior has been ob-
served in experiments of directional solidification [12] and
in the Goldstein et al. model [36].

Several features can be extracted from such observa-
tions. First, although these domains are often referred as
‘solitary waves’ in the literature, they can not be qualified
as solitons, the collisions of which are not destructive. Sec-
ond, generated defects during collisions of propagating do-
mains are involved in the process of disorder creation [26].
In that sense, propagative domains indirectly contribute
to chaos, even though they are perfectly predictable.

7 Conclusion

The study reported in this paper has been focused on the
ordered dynamics of the pattern of columns, through three
main points. (1) A broad view of the different regimes has
been presented, with the overall pictures of their range
of stability, for different viscosities. (2) Exhaustive mea-
surements have shown the general tendencies of oscillat-
ing and drifting states, varying η, Γ and λ in the maximal
allowed ranges. The extended range of stability for dy-
namical regimes at high viscosities is an asset for such a
quantitative study, and to our knowledge, our system is
the only one that can enable this. (3) A host of break-
up scenarios of various regimes has been presented. They
show transitions from a well-defined laminar state to an
another one, as well as different routes to spatio-temporal
chaos. Most of these transitions are accompanied with de-
fects.

Amongst the results gathered in this study, some con-
clusive points of more general interest can be drawn.

– The pattern of liquid columns exhibits a host of
states, particularly at higher viscosities where the rich-
est dynamics is observed, with a large range of existence
for the regime of spatio-temporal chaos. Also, a complex
but predictable oscillating-drifting state, which owns the
striking property of spatial tri-periodicity, has been ev-
idenced. To our knowledge, no available model or set of
equations dedicated on one-dimensional patterns could re-
produce such a state.

– A generic set of equations has been found to describe
regimes of parity-broken drifting cells. Especially, checking
the dependency on λ has revealed relationships between
the phase and group velocities on one side, and the local
phase gradients on the other side. This has enabled an ac-
curate determination of coefficients for this system in the
initial model by Goldstein et al. [36], and has emphasized
the need for adding higher order terms. A rescaling, based
on this modified model, has revealed that both localized
and global states obey the same kinetics.

– Although originating from distinct mechanisms, the
regime of slow drift and the regime of parity-broken drift-
ing cells have several features in common: the drifting
speed of the cells increases with λ, Γ and η in both
regimes. Also, their appearance needs that Γ overcomes a
certain threshold, that is wavelength-dependent. Many re-
maining questions concern the regime of slow drift: partic-

ularly how a process of phase diffusion can spontaneously
trigger a homogeneous displacement of the columns.

– Many features of the array of columns show similar-
ities with other pattern forming unstable fronts. Consid-
ering morphology and space/time scales, the most resem-
bling experimental system should be the directional vis-
cous fingering [6–11]. Otherwise, some situations of direc-
tional solidification with lamellar eutectics [15], although
dealing with smaller space- and longer time-scales, have
shown striking similarities with our system, particularly
on the further destabilization of bifurcated states: ampli-
tude holes within an oscillating period-doubling state, os-
cillations of global drifting states (denoted as T − xλO in
[15]) or a pair of propagating ‘tilted’ domains launched at
the break-up of an oscillating patch [14]. All these systems
are suitable to provide inputs in order to validate and im-
prove existing models. As an alternative approach, some
attempts to calculate the secondary instabilities of the KS
equation, from an initial cellular solution with a few tens
of cells, have reproduced several typical behaviors result-
ing from non-trivial mode interactions: for instance, os-
cillating wakes behind propagative domains, phase jumps
and amplitude holes in oscillating regimes, or oscillations
prior to ruptures of global drifting states [58]. Thus we be-
lieve that such an equation is likely to capture many other
behavior of that class of systems, and could constitute a
powerful predictive tool. Still there are no obvious direct
identifications between control parameters of experiments
and coefficients of the KS equation.

Appendix A: Static states: liquid thickness
and lubrication theory

Let us first present simple arguments predicting h, the
thickness of liquid let below the overhang for a static
state. Considering Figure A.1a, we define q as the flow-rate
through each column and we obtain: q = Γλ. Defining r
as the radial coordinate from the center of a column, it is
possible to write a relationship that gives a coarse value
for the radial flow around a column: hur � q/2πr, ur be-
ing the radial speed. The latter relationship traduces that
the gravity drainage between each column (q) leads to a
radial, horizontal flow.

Let us first reduce to a 2D problem in the plane of the
figure and then identify ur to ux, the mean velocity along
the x axis. Close to the saddle point x = 0 (r = λ/2), we
have the superimposition of two flows along x:

hux =
Γλ

2π(λ/2 − x)
− Γλ

2π(λ/2 + x)
.

Then for x close to 0, one obtains:

h0ux =
4
π

Γx

λ
. (19)

In order to find a relationship for the speed ux, we nat-
urally write an equilibrium between gravity and viscous
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Fig. A.1. (a) Sketch of the flow around a column. (b) Side
view of the arch between two columns.

forces, under the assumption of the lubrication theory:

u = −h2

3η
∇P.

Taking the pressure P as −ρgh, or P = −ρgx2/2Rcx close
to the saddle point (x � λ), we obtain:

ux � ρgh2
0

3η

x

Rcx

Rcx being the radius of curvature of the interface at
the saddle point of the arch, in the plane of the figure.
We straightforwardly identify this relationship to equa-
tion (19):

h3
0 � 3η

ρg
Γ

Rcx

λ
. (20)

A naive but natural choice for Rcx would be a value of
the order of the characteristic length in the x direction:
Rcx ∼ λ/2, which would lead to:

h3
0 � 6η

ρg
Γ. (21)

This is the tendency given by the lubrication theory.
We confront the above simple ideas with measurements

of the film thickness between two columns in a static state,
at the saddle point of the arch h0. This corresponds to a
local minimal thickness of liquid that coats the overhang.
Figure A.2-a shows h0 for η = 100 cP versus Γ , for vari-
ous wavelengths λ. Similar results have been obtained us-
ing different viscosities. It is shown that the data are cor-
rectly fitted by square-roots laws. The following empirical

relation provides a good approximation of the thickness:

h0 ∼ f(λ, η)Γ 1/2 (22)

with f being an increasing function of λ and η.
The thickness h0 follows a different behavior from what

is predicted by the lubrication theory. The latter predicts
an evolution of h0 as the power one-third of Γ and no
dependency on λ (see Eqs. (20) and (21)). Instead, h0

increases like the square-root of flow-rate, and increases
for larger λ. The influence of viscosity has been explored:
with a viscosity twice larger (η = 200 cP) the thickness is
measured 1.2 to 1.5 times larger for the same Γ and λ.

This behavior suggest that the naive arguments lead-
ing to equation (21) should be flawed. First, Rcx may show
a more subtle dependency on λ (as it will be shown later).
Otherwise, it was observed that the transverse radius of
curvature Rcy should be of order of the thickness h and
then much smaller than Rcx (see Fig. A.1). Thus, the dom-
inant curvature should be R−1

cy � h−1, and it suggests that
this strong local curvature could lead to an internal pres-
sure in the film below the overhang: P ∼ γ/Rcy ∼ γ/h.

Thus, replacing P = −ρgz by P = γ/h in the lubrica-
tion theory, one obtains:

ux � −h2

3η
∂x

(γ

h

)
� γ

3η
∂xh.

Then, after a multiplication by h0 and assuming
a parabolic shape close to the saddle point: h =
h0

(
1 + x2

l2x

)
:

h0ux � 2γh2
0

3ηl2x
x.

Let us note that lx and Rcx are linked by: Rcx = l2x
2h0

. If
we identify to (19), we finally obtains:

h0 =
(

6η

πγ

l2x
λ

)1/2

Γ 1/2. (23)

Therefore, taking the assumption that the pressure in the
liquid layer is governed by capillary effects, and assuming
that the layer takes the shape of a ’tube’ of slowly varying
diameter in the vicinity of the saddle point, we find an
expression for h0 consistent with measurements (at least
at this stage, for the dependency on Γ ). The length lx
representing the parameter of the parabolic fit of the arch
close to the saddle point contains an implicit dependency
on λ. In order to find a reliable expression for lx, we check
this dependency.

Figure A.2b proposes that plotting the quantity
h2

0/(λ − λs) versus flow-rate makes the data collapse on
the same linear curve, taking λs = 0.75 cm. It leads to
an expression for lx that reads: l2x ∼ λ × (λ − λs). Other
possible choice for the dependency of h0 with λ have also
been found to make the data collapse (for example by
plotting h2

0λ
−3/2), but the one we kept, offers suitable or-

der of magnitude and variations for lx: this last point was
checked by directly extracting lx from parabolic fits of the
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Fig. A.2. (a) Liquid thickness between two columns, at the
saddle point of an arch h0 (η = 100 cP). Dashed lines stand
for square-root laws that provided the best fit. (b) The plot of
the quantity h2

0(λ − λs)
−1 versus flow-rate collapses points on

a single linear curve. Insert: the plot h2
0/Γ that has suggested

the rescalling.

shapes in the vicinity of the saddle point. The results are
illustrated in Figure A.3, on which the measured values of
lx are plotted versus λ. It indeed appears that lx converges
to zero at a finite value of λ, which suggests the expression
given above. However the agreement is only qualitative as
the value for the offset λs is close to 0.89 cm instead of
the value of 0.75 cm found for the best plot of h2

0/(λ−λs)
(with a pre-factor close to one). It is also not excluded that
λs could slightly depend on flow-rate, despite the master
curve of Figure A.2b used a fixed value for λs. The empir-
ical law that is kept for h0 is the one obtained from the
master curve of Figure A.2b:

h0 �
(

6η

πγ

)1/2

(λ − λs)1/2Γ 1/2 (24)

with λs = 0.75 cm.

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1 1.2
l x2  (

cm
2 )

λλλλ    (cm)

λ
s
 

from fig. A.2b

Best fit, 
λ

s
 = 0.89 cm

(b)

Fig. A.3. (a) Extraction of the shapes of arches at different
wavelengths, for the same flow-rate Γ = 0.177 cm2/s. (b) The
length lx, characterizing the shape of arches, versus λ. (η = 100
cP).

Of course, this description is still incomplete, but it
gives a meaningful idea of the hydrodynamics of static
columns.

Appendix B: coarse prediction
for the pulsation of oscillations from thickness
measurements

On Figure B.1 are defined the different quantities on in-
terest. This scheme is supported by direct observations
of a transiently (and periodically) growing drop between
two oscillating columns, when the spacing between them
is maximal (see also [33]). If one tries to roughly eval-
uate the volume of such a transient drop, one obtains
V = λh02πlc, multiplying the three characteristic lengths
along the azimuthal (λ), the vertical (h0) and the radial
direction (2πlc), recalling that lc is the capillary length
equal to

√
γ/ρg. Between two columns, the injected quan-

tity of liquid is Γλ. The characteristic time, necessary to
fill a transient drop is:

τR � 2πlcλh0

Γλ
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Fig. B.1. Sketch of the dimensional argument, leading to equa-
tion (26).

which evaluates the angular frequency to:

ω � Γ

lch0
.

Considering values of h0 that are presented in the previous
Appendix, the order of magnitude for ω is found around
10 rad/s, which is close to the experimentally found values,
see Figure 13a. The obtained values for C, from the fit of
ω versus Γ , are plotted on Figure 13b. They suggest that
a higher viscosity coarsely leads to a decrease of ω as a
power law with an exponent between 0.1 and 0.2. In the
previous Appendix, the fit of experimental data has led to
equation (24) for h0. Thus, a simplified law for ω can be
proposed:

ω �
(

πγ

6ηl2c

)1/2

(λ − λs)−1/2Γ 1/2, (25)

�
(

πρg

6η

)1/2

(λ − λs)−1/2Γ 1/2. (26)

The relationship between ω and the viscosity does not
simply come up. From equation (26) and the definition of
C, we can state that:

C � (πρg/6)1/2(λ − λs)−1/2η−1/2. (27)

Measurements of oscillating regimes are performed with a
wavelength λ very close to λ0, so that we can take it as the
value for λ. The variation of λ0 with viscosity is shown in
Figure 12. Plotting the value for C obtained from the fit
of ω/Γ 1/2 versus the expression given above, one obtains
the plot of Figure B.2. The qualitative tendency is satis-
factory although a departure from a linear relationship is
noticed. The length λs was also assumed not to depend on
η, which could be a cause for the departure. Thus, equa-
tion (27) provides a tentative scaling for the value of C, in
agreement with both direct measurements of ω and phe-
nomenological approaches based of measurements of h0.
The latter are based on the argument that the pulsation
of oscillations is linked to the time for turning the liquid
film of an arch into a pendant drop between two columns.
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Fig. B.2. Check of the variation of C with viscosity.

To summarize, semi-empirical arguments provide
rather convincing results, despite a complete quantita-
tive agreement could not be brought up. Consequently
to dynamics ruled by the complex free surface below the
overhang, simple hydrodynamical arguments show their
limitation for a complete description of phenomena. Oth-
erwise, a more precise description of these regimes can
benefit from more phenomenological approaches [7,25,33].
These approaches were inspired from that oscillations and
drifts seemingly originate from a common mechanism. The
occurrence of an oscillating wake left behind a propagative
domain constitutes an illustration of this statement.
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